

ELECTRICAL GUIDELINES FOR

Inverter-Based Micro-Generating Facility

(10KW and Smaller)

ESA-SPEC-004 R1 AUGUST 2019

Electrical Guidelines for Inverter-Based Micro Generation Facilities

- 1. Scope
- 2. Overview
 - 2.1 Types of Distributed Generation
 - 2.2 Typical Inverter-Based Micro Generation System
- 3. Definitions
- 4. Parallel Generation Projects
 - 4.1 Planning and Installation
 - 4.2 Electrical Inspection Process
- 5. Other Sources of Information

1. SCOPE

This guideline is intended to serve a very specific need for inverter based micro generation used for the following application:

1. Load displacement

The scope of the guideline deals only with the installation of inverter-based micro generation facilities, 10kW or smaller. For larger generator units, greater than 10kW refer to Spec-005-Process Guideline for the Installation of Parallel Generating Systems (Greater than10kW). For these larger installations, plans will have to be submitted to the Local Distribution Company and the Electrical Safety Authority for review and approval before any installation work begins.

This guideline is in no way intended to be used as a substitute for the Ontario Electrical Safety Code. Omission of any requirements in the OESC, from this guideline, does not in any way affect the OESC, and these omitted requirements shall not be considered irrelevant. The Ontario Electrical Safety Code is law in Ontario, and as such defines the legal requirements for safe electrical installations, products, and equipment in Ontario.

2. OVERVIEW

Today many home, farm and small business owners are considering the installation of alternative forms of electricity generation (distributed generation) and connecting them to run in parallel with the Local Distribution Company (utility) electrical system. This may include the installation of small wind turbines, photovoltaic (solar) systems, micro-hydro turbines or fuel cells and Energy Storage Systems (ESS). These systems are intended to reduce the amount of power purchased and the time at which it is purchased from the local electricity distribution company and where they are powered from renewable sources such as wind, flowing water or sunlight they also provide environmental benefits.

The Ontario Power Authority has developed the Renewable Energy Program for the Province to encourage and promote greater use of renewable energy sources including wind, waterpower, renewable biomass, bio-gas, bio-fuel, landfill gas and solar for electricity generating projects that can be connected to a host facility, a distribution system or the IESO-Controlled Grid, in Ontario. The fundamental objective is to help facilitate the increased use in the Province of Renewable Generating Facilities and Energy Storage Systems (ESS) of varying sizes, technologies and configurations via a standardized, open and fair process.

Any system that produces even small amounts of electricity can be potentially dangerous, creating the possibility of electrocution and fire hazards. Improperly installed systems will create serious safety hazards to property owners, their friends, family, employees and local electric distribution company workers.

Before installing any type of distributed generation, whether it is stand-alone or connected to the grid, it is important to understand the safety requirements. The safety regulations, the codes and the associated safety technical standards can be confusing and difficult to understand for non-technical persons. This guideline is intended to simplify these and provide basic safety advice to home, farm and business owners who are considering the installation of Inverter-Based Micro generation systems.

This guideline is based on the requirements of the Electrical Safety Authority's Ontario Electrical Safety Code (OESC) and the Ontario Energy Board's Distribution System Code.

August 2019 Page 3 of 12 ESA-SPEC-004 R1

2.1 TYPES OF DISTRIBUTED GENERATION

The Distribution System Code describes four categories of distributed generation.

Generator Classification	Rating
Micro	<u>≤</u> 10 kW
Small	(a) ≤ 500 kW connected on distribution system voltage < 15 kV
	(b) ≤ 1 MW connected on distribution system voltage ≥ 15 kV
Mid-Sized	(a) > 500 kW connected on distribution system voltage < 15 kV
	(b) > 1 MW < 10 MW connected on distribution system voltage > 15 kV
Large	> 10 MW

2.2 TYPICAL INVERTER-BASED MICRO GENERATION SYSTEM

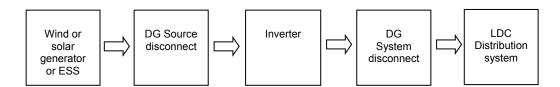


Diagram 1 - Block diagram of basic DG system

3. **DEFINITIONS**

Approved Electrical Equipment: Equipment that is approved in accordance with the OESC and bears product approval markings for use in Ontario. The presence of approval markings confirms to the user that the equipment is in compliance with the Ontario regulations (Refer to ESA website https://www.esasafe.com/electricalproducts/marks for recognized approval marks for products approved for use in Ontario).

Combiner box: A box used in solar installations to combine the multiple photovoltaic arrays source circuits to produce one circuit. It often contains generator overcurrent devices.

Disconnecting means: A device, group of devices, or other means whereby the conductors of a circuit can be disconnected from their source of supply. Examples of disconnecting means are a switch or a circuit breaker.

Distributed Generator (DG): Electric generation facilities connected to a Distribution System through a point of common coupling (PCC).

Generator: Equipment that produces electric power. Examples of inverter-based micro generators are wind turbine and photovoltaic array, both of which produce Direct Current (DC) power. Energy Storage Systems (ESS) the output of which are interconnected to a supply authority system are also examples of generators for the purpose of this specification.

DG <u>Source</u> <u>Disconnect</u>: Disconnecting means to disconnect the distributed generation source from the equipment that it supplies.

August 2019 Page 4 of 12 ESA-SPEC-004 R1

DG System Disconnect (Utility Disconnect): Disconnecting means to disconnect the distributed generator from the utility distribution system. This disconnect ensures the safety of electrical utility workers by allowing them to disconnect the generator from the utility system in case they have to service or repair the electrical supply to your home, farm or business. Also referred to as "utility disconnect".

Distribution Panel: The distribution panel contains overcurrent devices and distributes electricity to the various electrical circuits and equipment in your home, farm or business.

Distribution System Code (DSC): Sets out the minimum conditions that an electricity distributor must meet in carrying out its obligations, the DSC is established and approved by the Ontario Energy Board (OEB). All licensed electricity distributors in Ontario must comply with the provisions of the DSC as a condition of their license.

Inverter: A device that converts direct current (DC) electricity into alternating current (AC) electricity. It can also be referred to as power conversion equipment.

Stand-Alone Inverter: An inverter that operates only in stand-alone mode and thus contains no facility to synchronise its output energy to a Utility Distribution.

Utility-interconnected inverter: An inverter that is able to operate in grid parallel mode with the utility distribution facility. Thus contains provision for anti-islanding and for synchronizing distributed generation output voltage, phase and frequency to the utility distribution. Also known as "Grid Connected", or "Grid Tie Inverter". There are two types of utility-interconnected inverter; a Grid Dependant and a Grid Interactive.

Grid Dependent Inverter: An inverter that is able to operate in parallel to the distribution system and in order to operate there must be power available from the electric utility's electricity grid. Loss of power from the grid will initiate a shutdown of the inverter to prevent islanding. Distributed generation systems using a grid dependent inverter will not provide back-up power during a utility power outage.

<u>Grid-interactive Inverter</u>: An inverter that is able to operate in both stand-alone and grid-parallel modes according to the availability of the distribution system. It can be considered as an uninterruptible power supply that is also able to operate in grid-parallel mode. This type of inverter initiates grid-parallel operation.

Energy storage systems (ESS) — equipment or systems that receive electrical energy and provide a means to store that energy in some form for later use in order to supply electrical energy when needed.

Energy storage systems, self-contained — energy storage systems where the components such as cells, batteries, or modules and any necessary controls, and ventilation, illumination, fire-suppression, or alarm systems are assembled, installed, and packaged in a single energy storage container or unit.

Energy storage systems, other — energy storage systems that are not self-contained but are individual devices assembled as a system.

Island: A condition in which a portion of the utility distribution system is energized by a Distributed Generator while that portion of the utility distribution system is electrically separated from the rest of the utility distribution system.

Anti-islanding: The distributed generator system shall cease to energize the utility distribution system after the formation of an unintentional island (i.e. for inverter based generations the inverter shall meet the anti-islanding requirements of CSA C22.2 No. 107.1).

August 2019 Page 5 of 12 ESA-SPEC-004 R1

Local Distribution Company (LDC): The distribution of electricity to end use customers is carried out by Ontario's local electrical utilities or LDCs. These utilities are responsible for maintaining their community's network of distribution wires. Also referred to as "Supply Authority".

Micro-embedded generation facility: A generation facility connected on the customer side of the electricity meter that produces 10kW of electricity or less.

Net metering connection: The installation includes one revenue load meter. The generator is connected beyond the load meter, the generated power is used for load displacement; the project is a **Micro-embedded Load Displacement project**. Refer to <u>Diagram A</u>.

Ontario Electrical Safety Code (OESC): Provides the standards for the safe installation of all temporary and permanent electrical wiring and equipment. The OESC applies to all homes, businesses, farms and industry in Ontario. The Ontario Electrical Safety Code is law in Ontario, and as such defines the legal requirements for safe electrical installations and products/equipment in Ontario

Overcurrent Device: A device capable of automatically opening an electric circuit, under both predetermined overload and short-circuit conditions, either by fusing of metal or by electromechanical means (a fuse or circuit breaker). An approved fuse or circuit breaker is required to protect people and the electrical system from a short circuit or overload failures. This is an important safety device.

Service box: An approved assembly consisting of an enclosure that can be locked or sealed, containing either fuses and a switch, or a circuit breaker, and of such design that it is possible to operate either the switch or circuit breaker to the open position by manual means when the box is closed.

August 2019 Page 6 of 12 ESA-SPEC-004 R1

4. PARALLEL GENERATION PROJECTS

4.1 PLANNING AND INSTALLATION

Before you begin any installation work or make any commitments to purchase equipment or have equipment installed, it is very important that you review all relevant documents, guidelines and available information.

A. Information to be gathered and reviewed:

- 1. Review the Independent Electricity System Operator website http://www.ieso.ca/
- 2. Review the Ontario Energy Board's Distribution System Code (Appendix F)

3. Review the OESC and these Electrical Safety Authority Guidelines

Be sure to review and understand the Electrical Safety Authority guidelines, including the requirements for electrical inspection and approval. An "Application for Inspection" is required.

4. Some questions to consider are:

- Is a service upgrade required to accommodate the installation of an alternative generator?
- Are there any other special technical requirements?
- Discuss with your LDC

5. Check for any local bylaw or permit requirements.

In addition to ensuring that you understand the electrical safety requirements you should also check with you local municipality, township or county about any by-law or permit requirements that might apply depending on the type of installation.

B. Proceeding with the Installation:

1. Submit a connection request form to your LDC

Refer to your LDC website or contact them for information regarding their connection process for renewable energy and energy storage projects.

2. Select Your Electrical Contractor

Prior to hiring an Electrical Contractor, confirm that they are licensed by the Electrical Contractor Registration Agency of the Electrical Safety Authority (ECRA/ESA)

It is also recommended that you ensure that:

- They can provide references
- They are prepared to apply fort the necessary Notification of work if the person you are considering for the installation tells you that an electrical inspection is not required or suggests that you apply for the inspection on his or her behalf, find someone else to do the work.
- They will provide a written estimate of the cost of the work.
- You ask about the amount of experience the electrical contractor has installing alternative generation systems.
- If the electrical contractor is providing the electrical equipment as part of the installation ensure that they are providing and installing approved equipment.
- They will provide you with a copy of the "Certificate". The Local Distribution Company will require a copy of the "Certificate" before they will finalize the connection agreement with you. You may

wish to hold back final payment until you get this certificate.

3. File a Completed Notification of work with the Electrical Safety Authority

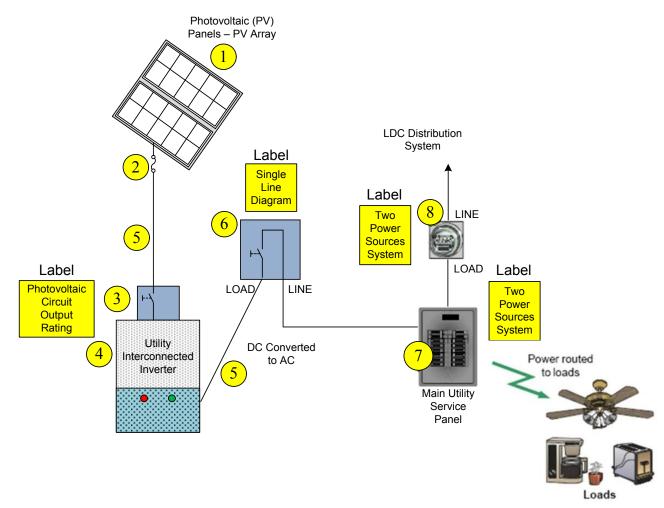
Before beginning the electrical work (or within 48 hours), your electrical contractor must file Notification of work with the Electrical Safety Authority and pay the appropriate fees. For the installation of micro-generation systems the submission and approval of plans is not required. If you are the homeowner and you are doing the work (not recommended) you are responsible for filing the application for inspection.

1-877-ESA-SAFE (1-877-372-7233) || www.esasafe.com

An Electrical Inspector will inspect the installation to determine if it meets the requirements of the OESC.

If the installation meets the safety requirements of the OESC, then a "Connection Authorization" will be issued to the LDC and a "Certificate of Inspection" will be provided to the applicant (i.e.: owner/electrical contractor). These documents provide assurance that the installation was inspected by ESA, was found in compliance with the requirements of the OESC, and may be connected and used.

4. Finalize the connection agreement with the LDC


August 2019 Page 8 of 12 ESA-SPEC-004 R1

4.2 ELECTRICAL INSPECTION PROCESS

Before the generator can be connected to the electrical system it must be inspected and approved by the Electrical Safety Authority. The OESC requires a Notification of work to be submitted by the contractor doing the electrical installation. The inspection provides assurance that the installation meets the safety requirements of the OESC. The electrical inspection process does not include the inspection of the structural integrity of the roof, the windmill installation or other non-electrical infrastructure for the installed generator equipment.

In addition to the standard inspection process, to verify that the electrical work meets the OESC, the ESA will be reporting the following to the LDC:

- 1. The type of the renewable energy of the project (i.e.: solar, wind etc.).
- 2. The generator total kW capacity and the inverter maximum output kW capacity

- 4. <u>Diagram A: Net metering connection Micro-embedded Load Displacement System</u>
- 5. With reference to the above diagram, the Inspector will look for the applicable OESC requirements when inspecting the generation installation.

All electrical devices and equipment shall be approved and bear accepted product approval markings for use in Ontario.

With reference to diagram A, the following is required according to the OESC:

Generator type and characteristics

The generator could be wind powered, photovoltaic, micro-hydro, etc. The Inspector will check the nameplate and note the generator electrical characteristics. Manufacturer specifications shall be made available to the inspector.

For Solar installations, flexible cords for extra-hard usage shall be permitted to interconnect modules within an array. If the combiner box is installed within the array, flexible cord shall be permitted to connect the array to the combiner box.

Overcurrent Device(s)

Where required by the OESC for protection of conductors and equipment from overcurrent (short circuit or overload). The rating and type shall be compliant with the OESC based on the generator nameplate ratings and the conductors and equipment.

For a Solar installation, the overcurrent devices may be located in the combiner box. The combiner box shall be permitted to be located on the roof.

Disconnecting Means - Generator or Distributed Generation (DG) Source

The disconnecting means shall be sized to safely disconnect the output of the generator unit. The OESC provides information on the sizing requirements The disconnecting means shall have a label marked "DG SOURCE DISCONNECT".

For solar installations, a permanent marking shall be provided at an accessible location at the disconnecting means for the photovoltaic output circuit specifying; rated operating current and voltage; rated open-circuit voltage; and rated short-circuit current.

Some Inverters units might have the disconnecting means built into the inverter unit. In that case, the label "DG SOURCE DISCONNECT" will be on the inverter unit. If this is the case a separate disconnecting means is not required.

If the inverter is an integral part of the generator, and the combined unit is approved, there is no DG SOURCE DISCONNECT required. For Micro-inverters plugged into the panels, no DG SOURCE DISCONNECT is required

Utility Interconnected Inverter

An approved Utility Interconnected Inverter is required. The inverter shall bear a certification mark that indicates that the inverter meets the requirements of the Canadian Standards Association Standard CSA C22.2 #107.1. Field Evaluation shall not be accepted for "Utility Interconnected Inverter". The Inspector will also check the nameplate and note the Inverter electrical characteristics.

The inverter shall bear a label stating "UTILITY-INTERCONNECTED" indicating it meets the standard for utility interconnected inverters.

Wiring Methods

Wiring shall be installed in accordance with requirements set out in Section 12 of the OESC.

August 2019 Page 10 of 12 ESA-SPEC-004 R1

All exposed installations including cables, conduits, connector, attachment plugs, etc. will be approved for outdoor installations and marked accordingly.

For Solar installations, refer also to Section 50 for additional requirements. Permanent wiring methods identified in Section 12 shall be used to interconnect the inverter to the array.

6

Disconnecting Means — Distributed Generation (DG) System (Utility disconnect)

The inspector will verify that a disconnecting means (intended to prevent back feed into the utility system) is installed. Recommended location of the disconnecting means is adjacent to the utility meter(s). The disconnecting means shall be properly sized to disconnect the electrical output from the inverter, have provision for being locked in the open position and will simultaneously disconnect all ungrounded conductors of the distributed generator from the distribution supply system.

NOTE: Verify if your LDC requires contact operation to be verified by direct visible means, and that the location of the utility disconnect meets the LDC's requirements.

The disconnecting means shall have a label marked "DG SYSTEM DISCONNECT – WARNING – TWO POWER SOURCES".

A single line diagram shall be posted at the disconnecting means. This single line diagram must be plainly and permanently marked, shows the switching arrangements, the location of the disconnecting means, the location and type of generator. The single line diagram should identify related components of the interconnected system, including switching arrangements, interlocks, isolation points, and their relative locations.

Load displacement systems shall be connected to a dedicated branch circuit in the host distribution panel

Load displacement projects are not required to make application to the IESO

Net Metering is an agreement between the LDC and a customer who generates electricity from renewable resources. The customer produces and consumes electricity, and may send surplus energy to the grid.

August 2019 Page 11 of 12 ESA-SPEC-004 R1

5. OTHER SOURCES OF INFORMATION

- Ontario Electrical Safety Code
- CSA C22.2 #107.1 General Use Power Supplies
- ULC/ORD-C1703-01 Flat Plate Photovoltaic Modules and Panels
- The Renewable Energy Handbook for Homeowners by William H. Kemp
- Smart Power; an urban guide to renewable energy and efficiency The Renewable Energy Handbook for Homeowners by William H. Kemp
- Distribution System Code published by OEB
- Standby Generators and Emergency Power Information By Ministry of Agriculture and Food
 - Generator Handbook
 - Generator fact sheets
 - o http://www.omafra.gov.on.ca/english/engineer/energy.html
- Electricity Generation Using Small Wind Turbines at Your Home or Farm, by S. Clarke of the Ministry of Agriculture
- CAN/CSA-C22.2 No. 257-06 Interconnecting Inverter-Based Micro-Distributed Resources to Distribution Systems
- The Kortright Centre for Conservation environmental and renewable energy education and demonstration centre.

To file for a Notification of work call: 1-877-ESA-SAFE (372-7233)

www.esasafe.com

August 2019 Page 12 of 12 ESA-SPEC-004 R1